top of page


Mellissa attended a residency at the Eden Project as artist in residence at the Invisible Worlds Lab, where she began a new line of research, unearthing the fascinating stories that lie within soil, experimenting with synthetic and natural dyes and developing ways in which to visualise the invisible world of plants. With guidance from Eden’s horticultural specialists, Mellissa investigated the plant life of the Biomes and botanical cells by studying soil and plant tissue samples with collaborator Professor Mark Clements.


Mellissa experimented by making her own dyes/stains which were extracted from plants.  There were used to visualise cellular structures of plants and also to explore in more detail the microbes within soil and plant tissue. She also conducted experiments to isolate and grow different fungi from decaying wood samples as well as soil, to look at the diverse morphologies of the organisms that grew. Together with Prof. Clements, they set up competition experiments between the different fungi to study their interactions, with the hope of mycelial combat (‘fungal wars!’) on the plate and under the microscope.

Mellissa Monsoon’s work with the Eden Project began with the exhibition The Invisible You: The Human Microbiome, where she is currently exhibiting the project Microbial Me, an agar sculpture of the artist’s face with bacteria from Mellissa covering the surface of the agar.  This living sculpture has been growing in the space for over three years.

RESIDENCY DURATION 1st - 12th August 2018

Returning to the Eden Project was incredible and seeing the way the project Microbial Me has evolved over the last 3 years was fascinating. It was also incredible to see the new Invisible Worlds Lab built in the Core building with all the interactive art works, and the breath taking centre piece Infinity Blue by Studio Swine. It was the perfect environment to inspire my current line of enquiry into the plant world whilst also allowing me to communicate my findings with the public who visited (apparently 10K people per day visit in August). 


My research began by looking into a section of the Eden Project garden where all the plants that grow are used to create dyes, these include: Bloodroot, Canadian Goldenrod, Chinese Indigo, Dyer's Greenweed, Horesfly Weed, Woad, Heather, Stinging nettle, Madder, Daffodil, Oregon Grape, Staghorn Sumac, Lady's Bedstraw, Rubarb, Impatiens Tinctoria, Weld and Pokeweed. I collected samples from each plant that was growing this time of year and set up agar plate experiments by immersing the plant samples into agar and then incubating to see what microbes or fungi grew a few days later. I worked closely with lab technician Sophie Holden who assisted me with setting up the experiments as well as sharing her knowledge of biology.

I was keen to collaborate internally with staff at Eden and one in particular, Carla Wentink, (story teller) who has worked at Eden for 16 years. Carla visited me in the lab to share her knowledge about natural dyes extracted from plants and also her knowledge from dyeing wools and fabrics in her spare time. She came into the lab with samples of hand spun wool that she dyed with Madder, Indigo and Woad. Carla also showed me the physical specimens she had of Madder Root and Oak Apple which she explained the process of producing the dye from each specimen.

The microscope I was using at the Eden lab, Zeiss Axio zoom V16, where the majority of my images have come from during this residency. Both Carla and I looked at her hand spun and dyed wool samples, this exchange has inspired us both in different ways; myself with natural dye plant research and Carla who has been shown a different perspective of making natural dyes.  My purpose of understanding this process was to make my own dyes in an attempt to stain the internal structures of plants. This resulted in Carla kindly giving me concentrate of Chinese Indigo, Madder and Weld to experiment with. 

The first weekend of the residency my collaborator Professor Mark Clements, from Middlesex University, joined me to run experiments to stain plant cells with synthetic dyes and natural dyes I had made a few days before. We also looked at the results from my first experiments when I immersed plant specimens into agar plate to see what microbes would grow from each plant sample. We also perfected our ability to perform epidermal leaf peels which are a monolayer cells taken from the leaf. We stained these leaf peels with both natural and synthetic dyes. We also used the Gram staining protocol to see whether the bacteria grown from the first set of experiments were Gram positive or negative which helped us identify the growth as likely to be Bacillus subtilis.